Seasonal prediction of the intraseasonal variability of the West African summer monsoon precipitation

1. Introduction

- Seasonal prediction is probabilistic in nature
- Dynamical forecast systems have substantial systematic errors
- Important to quantify the main sources of uncertainty
 - Initial conditions
 - Ensemble forecast
 - Model inadequacy
 - Multi-model ensemble forecast
- West African monsoon (WAM) is one of the most challenging climate problems because of high mortality risks due to extreme and persistent droughts

2. Objectives

- Combine the ECMWF System 4, the NCEP CFSv2, the Météo-France System 3 and a simple statistical model to predict the main modes of the WAM rainfall variability: Guinean and Sahelian regimes
- Assess the deterministic and probabilistic forecast quality of the single forecast systems and their combinations. This is performed in an operational forecasting context

3. Data and methods

- Operational forecast systems:
 - ECMWF System 4 (S4)
 - NCEP CFSv2 (CFSv2)
 - Météo-France System 3 (MF3)
- Simple Linear Regression, SST as predictor
- Niño3.4 as predictor for the Guinean rainfall regime
- First training period: 1951 - 1981, adding a new year at a time
- Target period: 1982 - 2010
- ERSST and GPCC were used to train the statistical model

4. Modes of WAM rainfall variability

- GPCP was used as the reference dataset for the verification assessment
- Monthly rainfall was averaged zonally over 10°W-10°E to assess both the role of the latitudinal migration and the intraseasonal distribution of rainfall on the WAM rainy season
- Principal component analysis to estimate the modes of variability: Guinean and Sahelian rainfall regimes

5. Forecast quality assessment

- S4, CFSv2 and MF3 are able to capture the main features associated with the two leading modes of WAM rainfall variability
- However, all these operational dynamical forecast systems have substantial systematic error (not shown)
- S4 has relatively high correlation when predicting the two leading modes of WAM rainfall variability and MF3 when predicting the Guinean regime. On the other hand, CFSv2 has low correlation when predicting the Guinean and Sahelian regimes
- All probabilistic scores show a similar conclusion: only S4 consistently beats the probabilistic climatological forecast
- S4 outperforms all single forecast systems and combinations

6. Conclusion

- This study will be extended to the spatial analysis of the monthly-mean two-meter temperature and precipitation predictions in the Mediterranean region

7. Future work

- LRLR would like to thank the World Meteorological Organization for providing the travel funding to attend this workshop. This study was supported by the Spanish MINECO funded RUCSS project (CGL2010-20657), the European Union’s FP7-funded WQWeCi (ENV-2009-1-243964) and SPECS (ENV-3038378), and the Catalan Government.

Acknowledgements